Probing buried carbon nanotubes within polymer–nanotube composite matrices by atomic force microscopy
نویسندگان
چکیده
Multi-walled carbon nanotubes (MW-CNT) inside a polyamide-6 (PA6)–MW-CNT composite were visualized by atomic force microscopy (i) in a field-assisted intermittent contact and (ii) in the tunneling (TUNA) mode. Individual buried MW-CNTs were clearly discerned within the PA6 matrix. An average diameter of 33 ± 5 nm of the MW-CNTs was determined based on field-assisted intermittent contact mode AFM images, which is consistent with the expected size of PA6-coated MW-CNTs. Single well dispersed MW-CNTs that are located in the sub-surface region of the composite were also observed in the TUNA mode. These new AFM approaches circumvent the tedious sample preparation based on ultramicrotoming required for high resolution electron microscopy studies to obtain ‘‘in-depth’’ morphological information and hence are expected to facilitate the analysis of CNT-based and other nanocomposites in the future. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Characterization and Compression Properties of Injection Molded Carbon Nanotube Composites By:
Since the development of carbon nanotubes (CNTs) in 1991, they have received much attention with improved mechanical, thermal, and electrical properties of their composites compared to common polymer composites. This study evaluated the effect of incorporating bundled and unbundled carbon nanotubes into Polyurethane/CNT/woven fiber reinforced composites. Atomic Force Microscopy (AFM) was used t...
متن کاملInvestigation of Multi-Walled Carbon Nanotubes as Electrochemical Electrodes
Individual multi-walled carbon nanotubes were investigated for their usefulness as nanoscale electrochemical electrodes. The nanotubes were mounted on metal-coated atomic force microscopy tips, and the assembly was insulated with Parylene polymer. Approximately 200nm of the nanotube tip was exposed by use of a laser so the entire probe could be immersed in an electrolytic solution with only the...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملMicroscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polyme...
متن کاملInterfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope
The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube–polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2)...
متن کامل